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Abstract 

Compositional data come up in many settings in 
survey research and pose special problems for 
imputation.  One prime example is expenditure data. 
The surveyor wishes to know how much was paid for a 
certain product or service and what financial resources 
were used to obliterate that debt. The special problems 
arise out of several features. First, all the potential 
sources must make nonnegative contributions.  Second, 
the sum of the contributions must equal the charge. 
Third, the variety of missing patterns is astounding and 
definitely not nested or ignorable. Medicaid patients 
know very well that they paid nothing for a particular 
service, but they have no idea what the total charge was 
or who really did pay it (the state or the provider?). 
HMO patients are similar. On the other hand, there are 
people who know very well what the total charge is but 
don't know yet how much insurance will pay and how 
much they will have to pay themselves. We have 
developed a new algorithm, partially inspired by Gibbs 
Sampling.  We describe the algorithm and present 
results from a small test dataset. 

1 

Introduction 

The imputation of payment sources is a critical 
area for the Medicare Current Beneficiary Survey 
(MCBS) since the primary focus of the survey is on 
how Medicare beneficiaries meet the financial 
responsibilities for their medical care. From Medicare 
records, we know the total approved cost of covered 
services, and we know how much of that amount was 
paid by Medicare. However, it is the distribution of the 
balance across possible payment sources that is of 
primary interest. Furthermore, the total cost of 
uncovered services such as dental care and how those 
costs were met is also of high interest. Experience with 
the National Medical Care Expenditure Survey 
(NMES) indicates quite strongly that the missing data 
structure will not be nested. 

Despite the importance of compositional data in 
financially-oriented consumption and business surveys, 
no systematic, general-purpose approaches have been 
developed for the imputation of missing compositional 
data.  Although a fair amount of work has been done 
for establishment surveys at the Census Bureau, this 
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work is largely unpublished and ad-hoc, relying heavily 
on the expertise of subject-matter specialists. With the 
large MCBS sample size and the low level of support 
for analytic staff at the contracting firm, this approach 
was not viable for MCBS. 

The term "compositional data" appears to have 
been coined by chemists or geologists. Jointly, the two 
disciplines have published extensively on this type of 
data. However, their work typically assumes that each 
possible component of the mixture is present in at least 
minute quantities. (Some work does allow for a small 
probability that a component is actually totally missing, 
but the strategy is rather complicated.)  Although this 
assumption may be reasonable in chemical and 
geological work, it is not reasonable for surveys about 
financial aspects of consumption.  (For example, 
people without private health insurance are not going to 
receive any reimbursement from such insurance.) 

Nonetheless, we did pick up some ideas from 
this field and combined them with ideas from Gibbs 
Sampling and from traditional hot-deck imputation 
methods to develop some new approaches to the 
problem. We developed three different approaches. 
However, due to space limitations, we only describe in 
detail the approach that we believe to hold the most 
promise. 

In the following sections, we discuss notation, 
the algorithm and a couple of alternative ideas, 
development of an artificial database, results, and 
recommendations. 

Notation: 

ζ=(δ,Y,Y+) is the vector to be imputed, where 

δ=(δ1,...,δs) where δi=1 if the i-th component is 

known to be present in a composition, δi=0 if the i-th 

component is known to be absent from a composition. 

Y=(Y1,..., Ys) where Yi is the level of the i-th 

component in the mixture, and 

Y+ is the total quantity of the mixture, measured 

in the same units as all the Yi. 



To aid in the imputation, the analyst will 
typically have a set of background variables available 
which provide predictive information about the 
composition. Let X be the matrix of values associated 
with such a set of predictor variables. 

It is possible for any or all parts of ζ to be 
missing.  Let g=(g1,...,gs,g+) where gi=1 if Yi is 

observed and 0 otherwise. Furthermore, let h=(h1,..., 

hs) where hi=1 if δi is observed (either clearly 0 or 1) 

and 0 otherwise. Let Ωh be the set of distinct values of 

* 
h realized in the sample. Let h be that element of Ωh 

* 
for which all the hi=1; i.e., h represents perfectly 

observed δ. 

The unique feature of compositional data that 
makes them so difficult to impute is that they must obey 
two constraints: 

0 �Yi�Y+ for every i and (1) 

ΣiYi = Y+. (2) 

The Skeleton of the Algorithm 

The algorithm has an iterative aspect that was 
inspired by Gibbs Sampling.  However, it is not a strict 
application of that technique. 

The first step is to make sure that the reported 
data obey the constraints and that nothing can be filled 
in by simple subtraction or addition. Besides checking 
constraints 1 and 2, it is necessary to check that Yi>0 

implies δi=1 and Yi=0 implies δi=0. 

The second step is to impute δ. For each 
element h of Ωh, conduct a separate hot-deck run to 

impute the missing portion of δ, where the donors and 
missing cases are matched on X and on the observed 
components of δ. Draw the donors from those with 

* 
pattern h=h . At this point, δ is complete. 

The third step is to come up with an initial 
feasible solution without worrying about how good the 
solution is. An initial solution is one where Y and Y+ 
are complete, obey the constraints, and are consistent 
with δ. The hope is that, due to the iterative nature of 
the procedure, the starting solution is not very 
important. We used two different methods to complete 
ζ depending upon g. If g+=0 (i.e., Y+ is missing), then 

we sequentially imputed all the Yi such that gi=0, 

where each imputation was a simple hot-deck with δi 
and X as conditioning variables. After completion of 
Y, we imputed Y+ as the sum of the imputed and 

reported Yi.  If, on the other hand, g+=1, then we 

counted up the number of missing Yi thought to be 

positive as m=Σiδi(1-gi) and set each of the positive 

missing Yi=(Y+-YR+)/m, where YR+=ΣjδjgjYj is the 

sum of reported elements of Y. 

The fourth step is to re-impute Y1 for each case 

where Y1 and Y+ were both originally missing.  This is 

done with a hot deck conditioned upon δ1, the sum of 

the other components of Y, and on X.  After Y1 is re-

imputed, its new value is added on to the sum of the 
other components to obtain a new value for Y+. This 

step is repeated for each of the Yi. The motivation for 

the step is to improve the pair-wise consistency of the 
individual Yi with the total, Y+. 

The fifth step is to re-impute the division of 
Y1+Y2 between Y1 and Y2 for all cases where both Y1 
and Y2 were originally missing but known to be 

positive. This is done with a hot deck conditioned on 
δ1,δ2,Y1+Y2, and X. The hot deck actually imputes 

P1=Y1/(Y1+Y2). The program then computes 

appropriate new values of Y1 and Y2. This step is 

repeated for each possible pair of components of Y. 
The motivation for the step is to improve the pair-wise 
consistency of the components of Y. 

The fourth and fifth steps are then iterated until 
adequate convergence has been obtained. 

More Motivation and Details on the 
Algorithm 

Step 2. The maximum number of elements in 

Ωh is 2
s
.  If s is large, running a separate hot-deck for 

each element of Ωh may be impractical. We tested an 

iterative procedure that involved fitting logistic models 
on pairs of components of δ, conditioning on 
preliminary imputed values for the rest of δ and X. 
However, we ran into severe problems with structural 
zeros. Another possibility that we did not develop if s 
is large is to develop an iterative pairwise hot-deck 
procedure for the components of δ. 



An issue that we didn't study at length was the 
choice of matching priority for the predictor variables. 
Typically, X and the observed portion of δ yielded 
more information than could actually be utilized in the 
hot-deck. (The full cross-product of all predictor 
variables led to cells so fine that there were some with 
only missing values.) 

Step 3. There are many different ways to 
develop initial feasible solutions. We did not establish 
invariance of the final result to the initial solution. In 
fact, we doubt that the procedure always converges to 
the same solution.  This is an area that probably 
deserves more research. 

An important question is whether it is even 
necessary to resort to an iterative algorithm.  We did 
develop and test a non-iterative algorithm, the core of 
which was an Aitchinson-type model for Y. The 
quality of the results on the simulated data set was 
excellent with this alternative. Unfortunately, the 
number of models that must be formed with this 
method rises with s even more sharply than does the 
number of hot-deck runs in step 2. Although computer 
time would be smaller with this noniterative approach, 
the amount of analyst time required to fit so many 
models is a fatal flaw. 

Steps 4 and 5. We developed parametric 
alternatives to the hot-decks in these steps. 
Unfortunately, these parametric models required 
substantially more human intervention than the 
nonparametric hot-decks -- without improving the 
quality. In fact, the parametric results tended to be 
worse for the simulated data set that we tested. 

As in step 2, we didn't pay much attention to the 
priority given to the predictor variables in the hot-deck 
matching.  In step 4, Y+-Yi was categorized into 

quartiles. The categorized variable was giving the 
highest match priority after δi. A similar procedure 

was used for Yi+Yj in step 5. 

Testing 

We created an artificial dataset for use in 
development and testing of the three methods. The 
dataset was deliberately created to be plausible for the 
health insurance arena. 

The first step was to create background variables 
that are assumed to be complete at the beginning of 
imputation.  We used four binary variables and one 
continuous variable. 

X1 (INSURED) indicates whether case has 

health insurance 

X2 (COMPANY) indicates coverage by one of 

two imaginary health insurance companies 

X3 (SERVICE) indicates which of two services 

was performed on the case 

X4 (METRO) indicates whether the case lives in 

a metropolitan area. 

X5 is the income of the case. It was generated 

so that ln(X5)∼ N(9,2.25). 

The next step was to generate Y+, the total cost 

of the service. We used the model: 

Y+i∼ N(50+250X3i-10X4i, 3+5X3i+X4i). 

Note the lack of homoscedasticity. It is assumed 
that the variance in the cost is greater for one service 
than for the other and that the variance is also larger in 
metropolitan areas than in nonmetropolitan areas. 
Heteroscedasticity like this is likely to be present in 
MCBS and very difficult to detect. 

Before creating the contributions to the bill from 
each source, we first created a "true" probe status for 
two of the three sources. For out-of-pocket expense, 
the probe was stochastically created such that 

 3-5δ2iX2iif (Y+i/X5i)�100 
logit{Pr{δ1i=1}}  = 

3δ2i-5δ2iX2i otherwise. 

Note this leads to a very complex model for δ1i 
that would probably not be ascertained in practice. 
One idea behind the model is that the likelihood of out-
of-pocket expense for extremely expensive services is 
higher if insurance is paying part of the bill (δ2i=1). 

The other idea is that one of the companies is very 
unlikely to require copayment for one of the services. 

The second probe, for insurance coverage, was 
also stochastically generated such that 

logit{Pr{δ2i=1}}= 2-30(1-X1i)+3X1iX3i. 

The ideas here are that the uninsured are 
extremely unlikely to have their medical expenses 
covered by their insurance and that both insurance 



companies are more likely to pay for one service than 
for the other service. 

For Y1i, we assumed that this variable 

represented the cost paid out of pocket by the case. For 
one type of insurance, we assumed a straight 20% 
copay. For the other type, we assumed a flat $10 copay 
plus a sliding 10% copay of the balance. For the 
uninsured, we assumed that they paid the whole amount 
up to some income-related limit. This is spelled out in 
the following formulae: 

 Y
+i

/5  if δ
1i

=δ
2i

=X
2i

=1 

Y
1i 

=  10+(Y
+i

-10)/10 if δ
1i

=δ
2i

= 1 and X
2i

= 0 


min{Y

+i,
X

5i
/100} if δ

1i
= 1 but δ

2i
= 0, and 

0 otherwise. 

If the service was covered by insurance, then the 
amount paid by insurance was assumed to be the total 
bill, less the copay.  Formulaically, this may be written 
as 

 Y+i-Y1iif δ2i= 1, 
Y2i = 


 
0 otherwise. 

Whatever was left of the bill was assumed to be 
picked up by other sources. These other sources could 
include public assistance, private assistance, 
forbearance by the provider, et cetera. Thus 

Y3i= Y+i-Y1i-Y2i and 

δ3i= 1 if and only if Y3i>0. 

Having created the "truth" the next step was to 
simulate nonresponse. Nonresponse was possible on 
any of seven dimensions.  The first dimension was not 
being able to report the total bill. Here we used 

logit{Pr{g+i=1}}=1 +3(1-X1i)-2Y+i. 

Note the dependence of the probability of 
nonresponse on the amount of the bill. This type of 
nonresponse is nonignorable and impossible to correct 
for unless the model is known in advance. We 
deliberately used such a model to make it tough on the 
methods.  Given that toughness, we shouldn't expect 
any of the methods to work perfectly. 

For not knowing the amount paid out of pocket, 
we used 

logit{Pr{g1i=1}}= 1.5 + (1-X1i)/10 - δ2i/2 

- (.4)X1iX21X31. 

Note the complex interaction term. That will 
make modeling difficult. 

For not knowing amount paid by insurance, we 
used 

logit{Pr{g2i=1}} = -2.5 +gi1 +3g+i 

+30(1-X1i)- (1.5)X1iX21X31 

Again, there is a complex interaction term. Also 
note the relationship with nonresponse on amount paid 
out of pocket and nonresponse on amount of total bill. 
Finally, note that the large coefficient forces everyone 
without insurance to know that insurance didn't pay 
anything. 

For not knowing the amount paid by other 
sources, we used 

logit{Pr{g3i=1}}= -2 + g1i +2g2i +g+i + 

+99[g1ig2ig+i - g1ig2i(1-g+i) 

-g1i(1-g2i)g3i-(1-g1i)g2ig3i]. 

The extremely large 99 forces response on the 
amount paid by other sources if all other amounts are 
known. It also forces nonresponse if exactly two of the 
three other amounts are missing. 

Lastly, nonresponse sometimes occurs on the 
probes, as well, where the person doesn't even know if 
a particular source paid any part of the bill (most likely 
with proxy respondent). Here we used: 

logit{Pr{h1i=1}} = 1+ 400g1i. 

logit{Pr{h2i=1}} = 1+ 400g2i - 2(1-g1i). 

logit{Pr{h3i=1}}  = 1+ 400g3i - 2(1-g1i) 

- 2(1-g2i) - 4(1-g1i)(1-g2i) 

The 400s force response on the probe if the 
amount is known.  Other assumptions are that if a 
person doesn't know the amount paid out of pocket, 
then he/she is less likely to even know whether 
insurance paid any part of the bill. 

Results 

Table 1 summarizes the results. The parameter 
of interest is given in the first column. The next 
column gives the truth for the particular data set that 



was generated.  Then missing rates are given. Note that 
missing rates are higher for correlations than for other 
statistics since both variables have to observed in order 
to compute the correlation. 

The "Observed" column indicates what the naive 
analyst would obtain without any imputation given the 
induced nonresponse. Note that two of the means are 
gravely biased, as are one of the correlations, and two 
of the kurtosis factors. 

The "Imputed" column gives the results for our 
preferred algorithm.  In general, our method worked 
better than no imputation.  Note in particular, the 
dramatic improvements in the means of Y2 and Y3, the 

correlation between Y2 and Y+, the standard deviation 

of Y2, and the kurtosis of Y2 and Y3. There was no 

major increase in bias for any of the parameters due to 
imputation. 

Table 1. Evaluation of algorithm on 200 cases with s=3 

Missing 
Parameter Truth rate Observed 

Means 
δ1 0.69 5% 0.69 

δ2 0.57 15% 0.50 

δ3 0.27 31% 0.33 

Y1 35.6 25% 38.6 

Y2 63.8 36% 37.4 

Y3 52.5 50% 70.4 

Y+ 152 40% 165.8 

Correlations: 
Y1 and Y2 -0.14 49% -0.14 

Y1 and Y3 -0.11 54% -0.18 

Y2 and Y3 -0.32 58% -0.29 

Y1 and Y+ 0.32 55% 0.34 

Y2 and Y+ 0.47 47% 0.24 

Y3 and Y+ 0.53 57% 0.63 

Standard Deviations 
Y1 65 25% 67 

Y2 100 36% 82 

Y3 105 50% 115 

Y+ 124 40% 126 

Skewness 

Further Study 
Our only real remaining reservation about our 

algorithm is the amount of computer run time that it 
might require with large s and a large number of cases. 
For MCBS, we anticipate s=9 and several hundred 
thousand records. We plan to run a series of 
progressively larger tests to determine just how 
computer time the algorithm will require in a realistic 
situation. 
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Y1 3.2 25% 3.0 3.2 

Y2 1.5 36% 2.4 1.5 

Y3 1.7 50% 1.2 1.7 

Y+ 0.3 40% 0.1 0.3 

Kurtosis 
Y1 9.7 25% 8.3 9.5 

Y2 0.6 36% 4.3 0.6 

Y3 1.0 50% -0.4 0.9 

Y+ -1.9 40% -2.0 -1 


